
SOLUTION TO PROBLEM 152[3]

August 26, 2019

A. Treibergs

Problem 3 of Section 6.4 on p. 152. Let {fk} be a sequence of differentiable function on

(a, b) and suppose there is a point c ∈ (a, b) such that the series

∞∑
k=1

fk(c) converges. Suppose also

that the sequence of derivatives {f ′k} satisfies |f ′k(x)| ≤ Mk on (a, b) and that the series

∞∑
k=1

Mk

converges. Then prove that

F (x) =

∞∑
k=1

fk(x) and G(x) =

∞∑
k=1

f ′k(x)

converge on (a, b) and F is differentiable with derivative G on (a, b).

Students were not sufficiently careful to solve this subtle and difficult problem. Many failed to
provide any details for the steps suggested. Here is the fleshed out solution following the outline
from class. Compare your solution to this one. You can also find this written up in Rudin,
Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976, pp. 149–153. The solution
uses the following Lemma, which says if one limit is uniform then the order of limits may be
interchanged.

Lemma. Let {hn(x)} and h(x) be functions defined for x ∈ (a, b) and n ∈ N. Assume hn(x)→
h(x) converges uniformly on (a, b) as n→∞ and that lim

t→x
hn(t) = An for each n. Then the {An}

converges to a number A and lim
t→x

h(t) exists and equals A. In other words, we may exchange the

limits
lim
t→x

lim
n→∞

hn(t) = lim
n→∞

lim
t→x

hn(t).

Proof. First we show that {An} is a Cauchy sequence. Choose ε > 0. Since the convergence
hn(x)→ h(x) is uniform on (a, b) it is a uniformly Cauchy sequence. There is an N ∈ R so that

|hn(t)− hm(t)| < ε whenever t ∈ (a, b) and m ≥ N and n ≥ N .

Hence
|An −Am| =

∣∣∣lim
t→x

[hn(t)− hm(t)]
∣∣∣ = lim

t→x
|hn(t)− hm(t)| ≤ ε

whenever m ≥ N and n ≥ N . Hence {An} is a Cauchy sequence, thus convergent, say An → A
as n→∞.

To show that lim
t→x

h(t) = A, choose ε > 0. Since hn(x)→ h(x) uniformly on (a, b), there is an

N1 ∈ R such that

|h(t)− hn(t)| < ε

3
for all t ∈ (a, b) and any n ≥ N1.

Since An → A, there is an N2 ∈ R so that

|An −A| <
ε

3
whenever n ≥ N2.
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Fix a number n > max{N1, N2}. For this n, since hn(t)→ An as t→ x, there is a δ > 0 so that

|hn(t)−An| <
ε

3
, whenever t ∈ (a, b) and |t− x| < δ.

Thus,

|h(t)−A| ≤ |h(t)− hn(t)|+ |hn(t)−An|+ |An −A| <
ε

3
+
ε

3
+
ε

3
= ε

whenever t ∈ (a, b) and |t− x| < δ. Hence h(t)→ A as t→ x as claimed.

Solution of the problem. First we show that G(x) =

∞∑
k=1

f ′k(x) converges uniformly on (a, b). We

are given that |f ′k(x)| < Mk and

∞∑
k=1

Mk converges. By the Weierstrass M-test, it follows that

G(x) converges uniformly on (a, b).
Second we show that F (x) converges. Fix x ∈ (a, b). By the Mean Value Theorem, since fk

is differentiable on (a, b), there is a ck between c and x such that

fk(x) = fk(c) + f ′k(ck)(x− c).

Since |f ′k(ck)(x − c)| < Mk(b − a) and

∞∑
k=1

Mk(b − a) is summable, by the Weierstrass M-test,

∞∑
k=1

f ′k(ck)(x− c) converges. We are given that the first term on the right is also summable. But

infinite sums may be added, so F (x) converges:

F (x) =

∞∑
k=1

(fk(c) + f ′k(ck)(x− c)) =

( ∞∑
k=1

fk(c)

)
+

( ∞∑
k=1

f ′k(ck)(x− c)

)
.

Third, we apply Lemma 1 to show that F (x) is differentiable and F ′(x) = G(x). Put

Fn(x) =

n∑
k=1

fk(x) and Gn(x) =

n∑
k=1

f ′k(x)

so Fn(x) → F (x) on (a, b) as n → ∞ and Gn(x) → G(x) uniformly on (a, b) as n → ∞. On the
one hand if the limit existed,

F ′(x) = lim
t→x

F (t)− F (x)

t− x
= lim

t→x
lim
n→∞

Fn(t)− Fn(x)

t− x
.

On the other, since we can differentiate FINITE sums termwise, F ′
n(x) = Gn(x). Thus

G(x) = lim
n→∞

F ′
n(t) = lim

n→∞
lim
t→x

Fn(t)− Fn(x)

t− x
.

The point of the problem is to justify the exchange of limits. To apply the Lemma, put

hn(t) =


Fn(t)− Fn(x)

t− x
, if t 6= x;

F ′
n(x), if t = x.

By using cases, our function hn(t) is defined for all t ∈ (a, b). Fix x ∈ (a, b). To apply the Lemma,
we show the limit exists:

lim
t→x

hn(t) = lim
t→x

Fn(t)− Fn(x)

t− x
= F ′

n(x) = Gn(x).
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Thus An = Gn(x). We also have to show that hn(t)→ h(t) uniformly on (a, b). For t 6= x, since
fn is differentiable, there is a cn between t and x such that∣∣∣∣fn(t)− fn(x)

t− x

∣∣∣∣ =

∣∣∣∣f ′n(cn)(t− x)

t− x

∣∣∣∣ = |f ′n(cn)| ≤Mn.

If t = x then we get the same bound |f ′n(x)| ≤Mn. By the Weierstrass M-test, the sum of these
expressions

h(t) = lim
n→∞

n∑
k=1

hk(t) =


∞∑
k=1

fn(t)− fn(x)

t− x
, if t 6= x;

∞∑
k=1

f ′k(x), if t = x.

=


F (t)− F (x)

t− x
, if t 6= x;

G(x), if t = x

converges uniformly on (a, b). Thus we have verified the conditions of the Lemma. Its conclusion
tells us that An → A as n→∞, in other words

A = lim
n→∞

An = lim
n→∞

Gn(x) = G(x)

which we knew already, and that the limit in the other order exists and equals A, namely,

G(x) = A = lim
t→x

h(t) = lim
t→x

F (t)− F (x)

t− x
= F ′(x)

as to be proved.
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